Agentic RAG Architecture
Standard RAG—retrieve relevant documents, generate a response—works well for straightforward queries. But enterprise knowledge work rarely stops at "find and summarize."
Real technical workflows require:
- Multi-step reasoning across multiple sources
- Tool execution (calculations, API calls, document generation)
- Iterative refinement based on intermediate results
- Orchestrated handoffs between specialized capabilities
This is the domain of Agentic RAG: systems that don't just retrieve—they reason, act, and iterate.
From Retrieval to Reasoning
The Limitations of Standard RAG
Standard RAG Pattern:
User Query → Embed → Vector Search → Top-K Docs → LLM → Response
This works for:
- "What is our policy on X?"
- "Summarize the findings from report Y"
- "When was document Z last updated?"
This fails for:
- "Compare our Q3 and Q4 projections and identify discrepancies"
- "Calculate the NPV using the assumptions from the investment memo"
- "Draft a response to this RFP based on our prior proposals"
The Agentic RAG Pattern
Agentic RAG extends the loop:
User Query → Planning → [Retrieve → Reason → Act] × N → Response
Key differences:
- Planning: The agent determines a multi-step approach
- Iteration: Multiple retrieve-reason-act cycles
- Tool Use: The agent can execute calculations, queries, or writes
- Memory: State persists across steps
Architecture Deep Dive
Core Components
┌─────────────────────────────────────────────────────────┐
│ AGENTIC LAYER │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Planner │ │ Executor │ │ Evaluator │ │
│ │ (Decompose │ │ (Run Steps) │ │ (Verify) │ │
│ │ + Route) │ │ │ │ │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
└────────────────────────┬────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────┐
│ TOOL LAYER │
│ ┌────────┐ ┌────────┐ ┌────────┐ ┌────────────┐ │
│ │ Search │ │ Calc │ │ Write │ │ External │ │
│ │ (RAG) │ │ (Math) │ │ (Docs) │ │ APIs │ │
│ └────────┘ └────────┘ └────────┘ └────────────┘ │
└─────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────┐
│ KNOWLEDGE LAYER │
│ ┌─────────────────┐ ┌──────────────────────────┐ │
│ │ Vector Database │ │ Structured Data (SQL) │ │
│ │ (Documents) │ │ (Metrics, Transactions) │ │
│ └─────────────────┘ └──────────────────────────┘ │
└─────────────────────────────────────────────────────────┘
The Planning Layer
The planner transforms a complex query into executable steps:
Input: "Compare our last three bids for similar-sized deals and identify where we were most competitive on pricing"
Planning Output:
{
"goal": "Analyze bid competitiveness across similar deals",
"steps": [
{
"step": 1,
"action": "search",
"query": "bid proposals deal size $10M-20M",
"purpose": "Retrieve relevant bid documents"
},
{
"step": 2,
"action": "extract",
"target": "pricing sections",
"purpose": "Extract pricing from each bid"
},
{
"step": 3,
"action": "calculate",
"operation": "compare pricing structures",
"purpose": "Normalize and compare pricing"
},
{
"step": 4,
"action": "analyze",
"query": "identify competitiveness factors",
"purpose": "Determine competitive advantages"
},
{
"step": 5,
"action": "synthesize",
"purpose": "Generate comparison report"
}
]
}
Tool Calling Architecture
Tools extend agent capabilities beyond text generation:
Search Tool (RAG retrieval)
interface SearchTool {
name: "knowledge_search";
description: "Search the document knowledge base";
parameters: {
query: string;
filters?: {
dateRange?: { start: Date; end: Date };
documentType?: string[];
accessLevel?: string;
};
limit?: number;
};
}
Calculation Tool
interface CalculationTool {
name: "calculate";
description: "Perform numerical calculations";
parameters: {
expression: string;
variables?: Record<string, number>;
};
}
Document Generation Tool
interface DocumentTool {
name: "generate_document";
description: "Create structured document from template";
parameters: {
template: string;
data: Record<string, any>;
format: "pdf" | "docx" | "markdown";
};
}
SQL Query Tool
interface SQLTool {
name: "query_data";
description: "Query structured business data";
parameters: {
query: string; // Natural language
tables?: string[];
limit?: number;
};
}
Execution Orchestration
The executor manages step-by-step execution with state management:
interface ExecutionState {
currentStep: number;
completedSteps: StepResult[];
workingMemory: Record<string, any>;
errors: Error[];
}
interface StepResult {
stepId: number;
action: string;
input: any;
output: any;
duration: number;
tokensUsed: number;
}
Execution Flow:
- Load plan and initialize state
- For each step: a. Resolve inputs from working memory b. Execute tool or reasoning c. Store outputs to working memory d. Evaluate success/failure e. Adapt plan if needed
- Synthesize final response
- Log complete execution trace
Evaluation and Guardrails
The evaluator ensures quality and safety:
Quality Gates:
- Relevance: Are retrieved documents on-topic?
- Accuracy: Do calculations verify correctly?
- Completeness: Were all required steps executed?
- Coherence: Does the final response address the query?
Safety Guardrails:
- Tool authorization: Is this tool allowed for this user?
- Data access: Does user have permission for these documents?
- Action scope: Is this action within allowed bounds?
- Rate limiting: Is usage within acceptable limits?
Implementation Patterns
Pattern 1: ReAct (Reasoning + Acting)
The agent interleaves reasoning and action:
Thought: I need to find our recent bid proposals
Action: knowledge_search("bid proposals 2025")
Observation: [3 documents found]
Thought: Now I need to extract pricing from each
Action: extract_sections(docs, "pricing")
Observation: [Pricing data extracted]
Thought: I should compare these price points
Action: calculate("compare pricing structures")
Observation: [Comparison results]
Thought: I can now synthesize the analysis
Action: generate_response(analysis)
Best For: Exploratory queries where the path is uncertain
Pattern 2: Plan-and-Execute
The agent creates a complete plan, then executes:
Planning Phase:
Given query: [user question]
Create plan:
1. Search for X
2. Extract Y from results
3. Calculate Z
4. Synthesize response
Execution Phase:
Execute step 1 → Store result
Execute step 2 → Store result
Execute step 3 → Store result
Execute step 4 → Return response
Best For: Complex but well-understood workflows
Pattern 3: Multi-Agent Collaboration
Specialized agents collaborate on complex tasks:
┌─────────────────┐ ┌─────────────────┐
│ Research Agent │◄───►│ Analysis Agent │
│ (Document │ │ (Numerical │
│ Retrieval) │ │ Reasoning) │
└────────┬────────┘ └────────┬────────┘
│ │
└───────────┬───────────┘
▼
┌─────────────────┐
│ Synthesis Agent │
│ (Report │
│ Generation) │
└─────────────────┘
Best For: Domain-specialized workflows requiring different expertise
Enterprise Governance
Audit Trail Requirements
Every agentic execution must be traceable:
{
"executionId": "exec-abc123",
"timestamp": "2026-01-01T10:00:00Z",
"user": "analyst@corp.com",
"query": "Compare bid pricing...",
"plan": { /* full plan */ },
"steps": [
{
"stepId": 1,
"action": "knowledge_search",
"input": { "query": "..." },
"output": { "documents": ["doc-1", "doc-2"] },
"duration": 1200,
"tokensUsed": 450
}
// ... additional steps
],
"totalTokens": 3200,
"totalDuration": 8500,
"response": { /* final response */ }
}
Access Control for Tools
Not all users should access all tools:
| Tool | Junior Analyst | Senior Analyst | Admin |
|---|---|---|---|
| knowledge_search | ✓ | ✓ | ✓ |
| calculate | ✓ | ✓ | ✓ |
| query_data | Read Only | Full | Full |
| generate_document | Draft Only | Full | Full |
| external_api | ✗ | Request | Full |
Cost Management
Agentic systems can consume significant resources:
Controls:
- Per-query token limits
- Step count limits per execution
- Daily/monthly user quotas
- Cost attribution by user/department
Monitoring:
- Token usage trends
- Average steps per query
- Tool usage patterns
- Failed execution rates
Error Handling
Agentic systems must fail gracefully:
Retry Strategies:
- Transient failures: Exponential backoff
- Tool failures: Alternative approach
- Context overflow: Summarize and continue
Fallback Behaviors:
- Partial results: Return what succeeded
- Human escalation: Flag for manual review
- Graceful degradation: Simpler approach
Performance Considerations
Latency Optimization
Agentic workflows are inherently slower than single-turn RAG:
Optimization Strategies:
-
Parallel Tool Execution
- Independent steps execute concurrently
- Dependency graph determines parallelization
-
Caching
- Cache frequent search results
- Cache intermediate calculations
- Cache compiled plans for common queries
-
Streaming
- Stream partial results as available
- Progressive response rendering
-
Model Selection
- Faster models for planning/routing
- Capable models for complex reasoning
- Specialized models for specific tools
Scaling Architecture
┌─────────────────────────────────────────────────────────┐
│ LOAD BALANCER │
└────────────────────────┬────────────────────────────────┘
│
┌───────────────┼───────────────┐
▼ ▼ ▼
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Agent │ │ Agent │ │ Agent │
│ Instance 1 │ │ Instance 2 │ │ Instance N │
└──────┬──────┘ └──────┬──────┘ └──────┬──────┘
│ │ │
└────────────────┼────────────────┘
▼
┌─────────────────┐
│ Shared State │
│ (Redis/etc) │
└─────────────────┘
Getting Started
Phase 1: Single-Tool Agent (Week 1-2)
Start with RAG + one additional tool:
- Implement basic search tool
- Add simple calculation tool
- Build ReAct-style execution
- Test with defined query patterns
Phase 2: Multi-Tool Orchestration (Week 3-4)
Expand tool capabilities:
- Add document generation
- Implement structured data queries
- Build plan-and-execute pattern
- Add execution logging
Phase 3: Production Hardening (Week 5-6)
Enterprise-ready features:
- Access control per tool
- Comprehensive audit logging
- Cost tracking and limits
- Error handling and fallbacks
Next Steps
For organizations implementing agentic RAG:
- Architecture Review: Evaluate your use cases against agent patterns
- Tool Inventory: Identify required tool capabilities
- Governance Design: Plan access control and audit requirements
Schedule Architecture Review | Explore Pilot Options
Related reading: