Oxaide
Back to blog
Technical Architecture

Agentic RAG Architecture: Beyond Retrieval to Autonomous Technical Reasoning

Moving beyond basic retrieval to autonomous multi-step reasoning. A technical guide to agentic RAG patterns, tool calling, and enterprise governance for complex knowledge workflows.

January 1, 2026
13 min read
Oxaide Team

Agentic RAG Architecture

Standard RAG—retrieve relevant documents, generate a response—works well for straightforward queries. But enterprise knowledge work rarely stops at "find and summarize."

Real technical workflows require:

  • Multi-step reasoning across multiple sources
  • Tool execution (calculations, API calls, document generation)
  • Iterative refinement based on intermediate results
  • Orchestrated handoffs between specialized capabilities

This is the domain of Agentic RAG: systems that don't just retrieve—they reason, act, and iterate.

From Retrieval to Reasoning

The Limitations of Standard RAG

Standard RAG Pattern:

User Query → Embed → Vector Search → Top-K Docs → LLM → Response

This works for:

  • "What is our policy on X?"
  • "Summarize the findings from report Y"
  • "When was document Z last updated?"

This fails for:

  • "Compare our Q3 and Q4 projections and identify discrepancies"
  • "Calculate the NPV using the assumptions from the investment memo"
  • "Draft a response to this RFP based on our prior proposals"

The Agentic RAG Pattern

Agentic RAG extends the loop:

User Query → Planning → [Retrieve → Reason → Act] × N → Response

Key differences:

  1. Planning: The agent determines a multi-step approach
  2. Iteration: Multiple retrieve-reason-act cycles
  3. Tool Use: The agent can execute calculations, queries, or writes
  4. Memory: State persists across steps

Architecture Deep Dive

Core Components

┌─────────────────────────────────────────────────────────┐
│                    AGENTIC LAYER                        │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐    │
│  │   Planner   │  │  Executor   │  │  Evaluator  │    │
│  │  (Decompose │  │ (Run Steps) │  │  (Verify)   │    │
│  │   + Route)  │  │             │  │             │    │
│  └─────────────┘  └─────────────┘  └─────────────┘    │
└────────────────────────┬────────────────────────────────┘
                         │
                         ▼
┌─────────────────────────────────────────────────────────┐
│                    TOOL LAYER                           │
│  ┌────────┐  ┌────────┐  ┌────────┐  ┌────────────┐   │
│  │ Search │  │ Calc   │  │ Write  │  │ External   │   │
│  │ (RAG)  │  │ (Math) │  │ (Docs) │  │ APIs       │   │
│  └────────┘  └────────┘  └────────┘  └────────────┘   │
└─────────────────────────────────────────────────────────┘
                         │
                         ▼
┌─────────────────────────────────────────────────────────┐
│                  KNOWLEDGE LAYER                        │
│  ┌─────────────────┐  ┌──────────────────────────┐    │
│  │ Vector Database │  │ Structured Data (SQL)    │    │
│  │ (Documents)     │  │ (Metrics, Transactions)  │    │
│  └─────────────────┘  └──────────────────────────┘    │
└─────────────────────────────────────────────────────────┘

The Planning Layer

The planner transforms a complex query into executable steps:

Input: "Compare our last three bids for similar-sized deals and identify where we were most competitive on pricing"

Planning Output:

{
  "goal": "Analyze bid competitiveness across similar deals",
  "steps": [
    {
      "step": 1,
      "action": "search",
      "query": "bid proposals deal size $10M-20M",
      "purpose": "Retrieve relevant bid documents"
    },
    {
      "step": 2,
      "action": "extract",
      "target": "pricing sections",
      "purpose": "Extract pricing from each bid"
    },
    {
      "step": 3,
      "action": "calculate",
      "operation": "compare pricing structures",
      "purpose": "Normalize and compare pricing"
    },
    {
      "step": 4,
      "action": "analyze",
      "query": "identify competitiveness factors",
      "purpose": "Determine competitive advantages"
    },
    {
      "step": 5,
      "action": "synthesize",
      "purpose": "Generate comparison report"
    }
  ]
}

Tool Calling Architecture

Tools extend agent capabilities beyond text generation:

Search Tool (RAG retrieval)

interface SearchTool {
  name: "knowledge_search";
  description: "Search the document knowledge base";
  parameters: {
    query: string;
    filters?: {
      dateRange?: { start: Date; end: Date };
      documentType?: string[];
      accessLevel?: string;
    };
    limit?: number;
  };
}

Calculation Tool

interface CalculationTool {
  name: "calculate";
  description: "Perform numerical calculations";
  parameters: {
    expression: string;
    variables?: Record<string, number>;
  };
}

Document Generation Tool

interface DocumentTool {
  name: "generate_document";
  description: "Create structured document from template";
  parameters: {
    template: string;
    data: Record<string, any>;
    format: "pdf" | "docx" | "markdown";
  };
}

SQL Query Tool

interface SQLTool {
  name: "query_data";
  description: "Query structured business data";
  parameters: {
    query: string; // Natural language
    tables?: string[];
    limit?: number;
  };
}

Execution Orchestration

The executor manages step-by-step execution with state management:

interface ExecutionState {
  currentStep: number;
  completedSteps: StepResult[];
  workingMemory: Record<string, any>;
  errors: Error[];
}

interface StepResult {
  stepId: number;
  action: string;
  input: any;
  output: any;
  duration: number;
  tokensUsed: number;
}

Execution Flow:

  1. Load plan and initialize state
  2. For each step: a. Resolve inputs from working memory b. Execute tool or reasoning c. Store outputs to working memory d. Evaluate success/failure e. Adapt plan if needed
  3. Synthesize final response
  4. Log complete execution trace

Evaluation and Guardrails

The evaluator ensures quality and safety:

Quality Gates:

  • Relevance: Are retrieved documents on-topic?
  • Accuracy: Do calculations verify correctly?
  • Completeness: Were all required steps executed?
  • Coherence: Does the final response address the query?

Safety Guardrails:

  • Tool authorization: Is this tool allowed for this user?
  • Data access: Does user have permission for these documents?
  • Action scope: Is this action within allowed bounds?
  • Rate limiting: Is usage within acceptable limits?

Implementation Patterns

Pattern 1: ReAct (Reasoning + Acting)

The agent interleaves reasoning and action:

Thought: I need to find our recent bid proposals
Action: knowledge_search("bid proposals 2025")
Observation: [3 documents found]

Thought: Now I need to extract pricing from each
Action: extract_sections(docs, "pricing")
Observation: [Pricing data extracted]

Thought: I should compare these price points
Action: calculate("compare pricing structures")
Observation: [Comparison results]

Thought: I can now synthesize the analysis
Action: generate_response(analysis)

Best For: Exploratory queries where the path is uncertain

Pattern 2: Plan-and-Execute

The agent creates a complete plan, then executes:

Planning Phase:

Given query: [user question]
Create plan:
1. Search for X
2. Extract Y from results
3. Calculate Z
4. Synthesize response

Execution Phase:

Execute step 1 → Store result
Execute step 2 → Store result
Execute step 3 → Store result
Execute step 4 → Return response

Best For: Complex but well-understood workflows

Pattern 3: Multi-Agent Collaboration

Specialized agents collaborate on complex tasks:

┌─────────────────┐     ┌─────────────────┐
│ Research Agent  │◄───►│ Analysis Agent  │
│ (Document       │     │ (Numerical      │
│  Retrieval)     │     │  Reasoning)     │
└────────┬────────┘     └────────┬────────┘
         │                       │
         └───────────┬───────────┘
                     ▼
            ┌─────────────────┐
            │ Synthesis Agent │
            │ (Report         │
            │  Generation)    │
            └─────────────────┘

Best For: Domain-specialized workflows requiring different expertise

Enterprise Governance

Audit Trail Requirements

Every agentic execution must be traceable:

{
  "executionId": "exec-abc123",
  "timestamp": "2026-01-01T10:00:00Z",
  "user": "analyst@corp.com",
  "query": "Compare bid pricing...",
  "plan": { /* full plan */ },
  "steps": [
    {
      "stepId": 1,
      "action": "knowledge_search",
      "input": { "query": "..." },
      "output": { "documents": ["doc-1", "doc-2"] },
      "duration": 1200,
      "tokensUsed": 450
    }
    // ... additional steps
  ],
  "totalTokens": 3200,
  "totalDuration": 8500,
  "response": { /* final response */ }
}

Access Control for Tools

Not all users should access all tools:

Tool Junior Analyst Senior Analyst Admin
knowledge_search
calculate
query_data Read Only Full Full
generate_document Draft Only Full Full
external_api Request Full

Cost Management

Agentic systems can consume significant resources:

Controls:

  • Per-query token limits
  • Step count limits per execution
  • Daily/monthly user quotas
  • Cost attribution by user/department

Monitoring:

  • Token usage trends
  • Average steps per query
  • Tool usage patterns
  • Failed execution rates

Error Handling

Agentic systems must fail gracefully:

Retry Strategies:

  • Transient failures: Exponential backoff
  • Tool failures: Alternative approach
  • Context overflow: Summarize and continue

Fallback Behaviors:

  • Partial results: Return what succeeded
  • Human escalation: Flag for manual review
  • Graceful degradation: Simpler approach

Performance Considerations

Latency Optimization

Agentic workflows are inherently slower than single-turn RAG:

Optimization Strategies:

  1. Parallel Tool Execution

    • Independent steps execute concurrently
    • Dependency graph determines parallelization
  2. Caching

    • Cache frequent search results
    • Cache intermediate calculations
    • Cache compiled plans for common queries
  3. Streaming

    • Stream partial results as available
    • Progressive response rendering
  4. Model Selection

    • Faster models for planning/routing
    • Capable models for complex reasoning
    • Specialized models for specific tools

Scaling Architecture

┌─────────────────────────────────────────────────────────┐
│                   LOAD BALANCER                         │
└────────────────────────┬────────────────────────────────┘
                         │
         ┌───────────────┼───────────────┐
         ▼               ▼               ▼
┌─────────────┐  ┌─────────────┐  ┌─────────────┐
│  Agent      │  │  Agent      │  │  Agent      │
│  Instance 1 │  │  Instance 2 │  │  Instance N │
└──────┬──────┘  └──────┬──────┘  └──────┬──────┘
       │                │                │
       └────────────────┼────────────────┘
                        ▼
              ┌─────────────────┐
              │  Shared State   │
              │  (Redis/etc)    │
              └─────────────────┘

Getting Started

Phase 1: Single-Tool Agent (Week 1-2)

Start with RAG + one additional tool:

  • Implement basic search tool
  • Add simple calculation tool
  • Build ReAct-style execution
  • Test with defined query patterns

Phase 2: Multi-Tool Orchestration (Week 3-4)

Expand tool capabilities:

  • Add document generation
  • Implement structured data queries
  • Build plan-and-execute pattern
  • Add execution logging

Phase 3: Production Hardening (Week 5-6)

Enterprise-ready features:

  • Access control per tool
  • Comprehensive audit logging
  • Cost tracking and limits
  • Error handling and fallbacks

Next Steps

For organizations implementing agentic RAG:

  1. Architecture Review: Evaluate your use cases against agent patterns
  2. Tool Inventory: Identify required tool capabilities
  3. Governance Design: Plan access control and audit requirements

Schedule Architecture Review | Explore Pilot Options


Related reading:

Oxaide

Done-For-You AI Setup

Enterprise Knowledge Engine

Secure, private RAG infrastructure for your organization.

Role-Based Access Control
Enterprise-Grade Encryption
Custom API Integration

Enterprise-Grade Security · PDPA/GDPR Compliant

GDPR/PDPA Compliant
AES-256 encryption
High availability
Business-grade security